TARGET RECOGNATION FROM MULTILAYERED DIELECTRIC SPHERES

Hasan AYDIN-- Advisor: Prof. Dr. Yesim ZORAL
PROJECT NUMBER: 62
Faculty of Engineering Electrical and Electronics Engineering Department

Abstract

This thesis presents electromagnetic targe recognition technique in far field region based on use of a new algorithm for calculation the far scattering field of an electromagnetic linearly polarized plane wave by a multilayered sphere This algorithm is more elegant for the general problem of scattering from a sphere with any number of layers, and to obtain the solution to scattering from a homogeneous sphere or a sphere with a single coating as special cases.

Introduction

In 1871, Lord Rayleigh (1842-1919) was interested in the scattering of light by particles in the earth's atmosphere, and conceived of as phere as being the simplest model for such scatterer. First, the most important calculation details are the 1908 Gustav Mie article. Robert A. Shore did broadcast the IEEE Antennas and Propagation magazine in 2015 analyzed scattering of an electromagnetic linearly polarized plane wave by a multilayered sphere
$>$ Rainbow theory is important for understanding spherical scattering and the parameters of reflection, refraction and

Fig.1: Reflection and Refraction of light at boundaries between air.

The aim of this project is to recognize the target from multilayer dielectric spheres

- It is to analyze the scattering field of an electromagnetic linear polarized plane wave by a multilayered sphere for classification of objects.

Fig.3: Multilayer dielectric spheres

Derivation Of The Mie Scattering Coefficients In A Nonabsorbing Medium:

Fig.5: The problem geometry used to generate electromagnetic signals scattered from the spherical targets.
Calculation of a_{n} and b_{n} mie coefficient.
$a_{n}=f_{n}\left(v_{L}\right) \frac{u_{L} A_{n}\left(v_{L}\right)-\left(\frac{\mu_{L}}{\mu_{L+1}}\right) v_{L} F_{S, n}^{(L)}+n\left(\left(\frac{\mu_{L}}{\mu_{L+1}}\right)\left(\frac{v_{L}}{u_{L}}\right)-\left(\frac{u_{L}}{v_{L}}\right)\right)}{u_{L} B_{n}\left(v_{L}\right)-\left(\frac{\mu_{L}}{\mu_{L+1}}\right) v_{L} F_{S, n}^{(L)}+n\left(\left(\frac{\mu_{L}}{\mu_{L+1}}\right)\left(\frac{v_{L}}{u_{L}}\right)-\left(\frac{u_{L}}{v_{L}}\right)\right)}$
$b_{n}=f_{n}\left(v_{l}\right) \frac{\left(\frac{\mu_{l}}{\mu_{L+1}}\right) v_{l} A_{n}\left(v_{l}\right)-u_{L} F_{T, n}^{(L)}+n\left(1-\left(\frac{\mu_{l}}{\mu_{L+1}}\right)\right)}{\left(\frac{\mu_{l}}{\mu_{L+1}}\right) v_{l} B_{n}\left(v_{l}\right)-u_{L} F_{T n}^{(L)}+n\left(1-\left(\frac{\mu_{l}}{\mu_{L+1}}\right)\right)}$
For complex argument the individual Riccati-Bessel functions and their derivatives can become extremely large in magnitude with associated overflow problems. The expressions is derived in a form suitable for practical computation, using ratios of Riccati-Bessel functions.

Fig.6: First five Bessel functions of the first and second kind.
The Scattered Field: The far scattered field equations
$E_{s c a}=E_{0} \frac{e^{i k r}}{-i k r}\left[\cos ø S_{2}(\theta) \hat{e}_{s \mid}+\sin ø S_{1}(\theta) \hat{e}_{s \perp}\right], \quad k r \gg 1$
$H_{s c a}=\frac{\left(k_{L+1}\right)}{\omega \mu_{L+1}} E_{0} \frac{e^{i k r}}{-i k r}\left[\cos \varnothing S_{2}(\theta) \hat{e}_{s \mid}+\sin \varnothing S_{1}(\theta) \hat{e}_{s \perp}\right], \quad k r \gg 1$
with
$S_{1}(\theta)=\sum_{n=1}^{M} \frac{2 n+1}{n(n+1)}\left[a_{n} \pi_{n}(\cos \theta)+b_{n} \tau_{n}(\cos \theta)\right]$
$S_{2}(\theta)=\sum_{n=1}^{M} \frac{2 n+1}{n(n+1)}\left[a_{n} \tau_{n}(\cos \theta)+b_{n} \pi_{n}(\cos \theta)\right]$

Fig.8: For single-layer sphere, Scattering signals at different angles (a) and different radius (b) for the dielectric sphere of $\boldsymbol{\varepsilon}_{r}=$

Conclusion

These results show that, this target recognition system is sensitive to the differences in the scattered signals caused by the sizes and refractive indices of the targets. The internal structure and thicknesses of the layers play an extremely important role in the scattering behavior of the sphere, and even small changes can significantly change the scattered field. In addition to this, if there is a strongly absorbing layer within the sphere, then the scattering behavior of the sphere is determined by this layer and the layers external to it.
The internal structure and thicknesses of the layers play an extremely important role in the scattering behavior of the sphere, and even small changes can significantly change the scattered field.

References

[1] Robert A. Shore, "Scattering of an Electromagnetic Linearly Polarized Plane Wave by a Multilayered Sphere: Obtaining a computational form of Mie coefficients for the scattered field," IEEE Antennas and Propagation Magazine, Volume: 57 Issue: 6 Dec. 2015.
[2] N. A. Logan, "Survey of some early studies of the scattering of plane waves by a sphere," Proc. IEEE, vol. 53, no. 8, pp. 773 785, Aug. 1965.
[3] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983 [4] M.Secmen, "A NOVEL MUSIC ALCORITHM BASED ELECTROMACNETIC TARCET RECOCNITION METHOD IN RESONANCE REGION FOR THE CLASSIFICATION OF SINCLE AND MULTIPLE TARGETS," pp. 57-62, Feb. 2008.
[5] Mustafa Alper Selver, Mehmet Mert Taygur, Mustafa Secmen, Emine Yesim Zoral, "Hierarchical Reconstruction and Structural Waveform Analysis for Target Classification" IEEE Transactions on Antennas And Propagation, Vol. 64, NO. 7, JULY 2016. [6] H. M. Nussenzveig, "The theory of the rainbow," Sci. Amer., vol. 236, no. 4, pp. 116-127, Apr. 1977

