

DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR DESIGN OPTIMIZATION USING METAHEURISTIC ALGORITHMS: A Case Study at Turkish Aerospace ENİS ÇALIŞIR - GİZEM ÖZBİLİR - ÖYKÜ ÇORAPÇIOĞLU - ECE ZIRHLI Assoc. Dr. Fehmi Burçin ÖZSOYDAN - Adem TUNÇDAMAR Dokuz Eylul University Faculty of Engineering

while (termination criterion not met) do

recombine P(t) to obtain C(t);

select P(t+1) from P(t) and C(t)

mutation:

t=t+1

end

end

evaluate C(t);

ABSTRACT

With striking and notable characteristics, metaheuristic algorithms offer quite unique opportunities in solving particularly constrained optimization problems. This project aims to develop a decision support system using reputable population-based metaheuristic algorithms for aerospace mechanical design optimization, especially for stiffened panels in airframes. A MATLAB GUI interface is designed to obtain parameters such as moment, shear forces, tensile strength, elongation forces and compressive strength from decision makers. Users can also set the metaheuristic algorithm parameters. The stiffened panel design is optimized considering strength and buckling constraints using Particle Swarm Optimization, Differential Evolution, Arithmetic Optimization and Genetic

METHODOLOGY

Differantial Evoution Algorithm

The Differential Evolution Algorithm is an algorithm for solving optimization problems. Initially, a random population is created where each individual represents a solution vector of the problem. In each iteration, the population evolves towards better solutions and eventually converges to a stopping point or the best solution. The Differential Evolution Algorithm has been widely used as an effective tool for solving complex and high-dimensional optimization problems.

Particle Swarm Optimization

In the implementation of Particle Swarm Optimization (PSO), the social behavior model among birds is considered. Each bird exchanges information about their positions, velocities, and fitness among themselves, and this exchange influences the behavior of the swarm to increase the likelihood of migration towards more optimal fitness regions. It is assumed that during their flights, each bird in a swarm continuously processes information about its own current position and velocity, as well as among the positions of other birds in the swarm.

Algorithms. An extensive experimental study and nonparametric statistical tests show promising results of this approach.

INTRODUCTION

The process of optimizing a function in the best or worst way under certain constraints is called optimization. The main goal of optimization is to ensure that a process is performed with maximum efficiency and effectiveness. However, most real-world problems cannot be solved exactly due to the limitations of classical optimization techniques. The main reason for this is related to the search procedures within each technique. The general structure common to all optimization processes consists of a defined space, a set and the mappings between them. The defined space of the problem allows us to identify the types of possible solutions each time we face an optimization problem. The problem space of an optimization problem is a set of possible solutions. A solution candidate is an element of the problem space of a given optimization problem. The union of all solutions to an optimization problem is called the solution space. The search space of an optimization problem is the set of all elements that can be handled by search operations. This structure allows optimizing problems with specific constraints, objetive functions, and variables.

Figure 1. Project Fishbone Diagram

Aritmetic Optimization Algorithm

This generated solution space is then refined through a set of optimization rules iterated under a given objective function. This method forms the basis of optimization techniques. In addition, under a given mathematical problem, the probability of obtaining the global optimum solution increases with a sufficient number of solution spaces and random iterations.

Figure 8. The search phases of the AOA

DECISION SUPPORT SYSTEM AND RESULTS

Children

Fitness

Members of Next Generation

Coded Form; Vector

(String) Consists of Genes With Alleles Assigned

Number Assigned to a Solution;

Apply the Subtraction math operator (S " - ").

Apply the Addition math operator (A " + ")

end if

end for

: C Iter=C Iter+1 : end while

L. Return the best solution (x

end for

Update the ith solutions' positions using the first rule in Eq. (5).

Update the ith solutions' positions using the second rule in Eq. (5)

STRENGTH ANALYSIS

The strength analysis of the stiffened panel involves a detailed calculation and optimization process to ensure structural integrity and safety. The process begins with defining the main components of the panel and identifying key design parameters such as width (W) and thickness (T). These parameters are essential for calculating the sectional properties of the panel, including the moment of inertia, cross-sectional area, and center of gravity.

Subsequently, the Principal and Von Mises stresses are determined for each component, providing insight into the stresses the material will experience under various loads. Finally, the Reserve Factor (RF) is calculated for both stress types, indicating the safety margin between actual and allowable stress levels. This comprehensive analysis ensures that the components can safely withstand the applied loads.

Step	Description	Formula	
Sectional Properties	Moment of Inertia about x-axis	$I_{xx,i}=rac{b\cdot h^3}{12}$	
	Total Cross-Sectional Area	$\sum A = \sum_{i=1}^n b_i \cdot h_i$	
	y-coordinate of Center of Gravity	$Y_{COG} = rac{\sum_{i=1}^n A_i \cdot y_i}{\sum A}$	
	Moment of Inertia about Center of Gravity	$I_{xx, ext{cog}} = \sum_{i=1}^n I_{xx,i} + A_i \cdot \Delta y^2$	
Stress Calculations	Shear Stress	$ au = rac{T}{\sum A}$	
	Principal Stress	$\sigma_i = \left(rac{N}{\sum A} + rac{M_{ ext{sum}} \cdot y_i}{I_{xx, ext{cog}}} ight)$	
	Von Mises Stress	$\sigma_{vm,i}=\sqrt{\sigma_i^2+3\cdot au^2}$	
Reserve Factor (RF)	With Principal Stress	$RF_i=rac{F_{tu}}{\sigma_i}$	
	With Von Mises Stress	$RF_i = rac{F_{tu}}{\sigma_{vm,i}}$	

Table 1. The Formulas Used for Strength Analysis

STABILITY ANALYSIS

This section presents a stability analysis of the stiffened panel structure. Local stability analysis has been applied to each component of the structure. If the stress value calculated in the elements of the structure is negative, the system begins to buckle. The surface geometry, loads, and material priorities of the structure under investigation should be examined. Subsequently, the plate boundary conditions, such as free, hinged, and fixed edges, are analyzed to determine which case of single compressions they are subjected to. The single compressions evaluated on flanges and plates will determine the fixed parameters for the structural components in the calculations, according to their respective cases. The following material properties are used:

Parameters for use in optimization algorithms were obtained from the user through a MATLAB GUI interface. The user was prompted to determine the feasible range of thickness and length values, force values and algorithm parameters for optimization process.

Figure 13. Matlab GUI Interface

P Brameou		Thickness and Width	Upper Bounds	Lower Bounds	Citizencial Ex	analoh Algorithm Souccute		Dillerei	initial Evalution	
Moment (N*mm)	-750000	Thickness of IA	3	1.5	Population Size	200	Thickness and Width	Values	Reserve Far	tors
Axial Force (N)	-40000	Width of IA	80	30	Run	50	Thickness of IA	1.5000	Stress RF of IA	19.6580
Shear Force (N)	10000	Thickness of IB	3	1.5	Iteration	3000	Width of IA	30.0000	Stress RF of IB	19.6580
Ftu	450	Width of IB	60	30	xOverRate	0.5	Thickness of IB	1.5000	Stress RF of W1	17.9258
Fcy	350	Thickness of W1	4	2	Fstable	0.1	Width of IB	30,0000	Stress RF of W2	15.2400
a (mm)	500	Width of W1	*	2	Interval	250	Thickness of W1	2,0000	Stress RF of W3	13 2541
Elastite Modülü	71000	This has a st M/2	60	30	xOverUB	2	Model of Mrt	2.0000	Stress DE of W/A	44 7964
nc	14	Thickness of W2	4	2	xOverLB	-1		30.0000	Otress RF of 944	11.7201
nu_p	0.5	Width of W2	60	30	stepinit	2	Thickness of VV2	2.0000	Stress RF of UA	11.0972
nu_e	0.33	Thickness of W3	4	2	steprinai	0.1	Width of W2	30.0000	Stress RF of OB	11.0071
Number of Parts	10	Width of W3	60	30			Thickness of W3	2.0000	Stress RF of S1	11.0071
		Thickness of W4	4	2			Width of W3	30.000	Stress RF of S2	11.0071
Buckling C	ases	Width of W4	60	30	1		Thickness of W4	2.0001	Von Misses RF of IA	15.5767
A	4	Thickness of OA	3	1.5	1		Width of W4	30.000	Von Misses RF of IB	15.5767
IB	4	Width of OA	80	30			Thickness of OA	2.0050	Von Misses RF of W	14.6715
WEB	10	Thickness of OB	3	1.5			Width of OA	67.2444	Von Misses RF of W	13.0864
OB	4	Width of OB	80	30	1		Thickness of OB	1.5000	Von Misses RF of W	11.7638
S1	10	Thickness of S1	2.5	1.2	1		Width of OB	59.8987	Von Misses RF of W	10.6562
S2	10	Width of S1	500	80			Thickness of S1	2.5000	Von Misses RF of O/	10.1777
		Thickness of S2	2.5	1.2			Width of S1	85.6297	Von Misses RF of OE	10.1698
		Width of S2	500	80	1		Thickness of S2	2.5000	Von Misses RF of S1	10.1080
							Width of S2	85.6363	Von Misses RF of S2	10.1080
									Buckling RF of IA	13.8296
									Buckling RF of IB	13.8296
									Buckling RF of WEB	1.6915
									Buckling RF of OA	1.0017
									Buckling RF of OB	1.0018
									Buckling RF of S1	1.0001
									Buckling RF of S2	1.0000

To visualize the real-world applicability of the obtained dimensions, MATLAB was used to create 'plot' graphs. These plots provided a visual representation of the shapes for each run, allowing for an intuitive assessment of the practicality and feasibility of the design parameters in a real-world context. This visualization step was crucial in ensuring that the optimized dimensions not only met theoretical requirements but also translated effectively into practical applications.

Figure 14. DE Plot Graph of I-Panel

CONCULUSION

Each algorithm was run 50 times over 3000 iterations, and the results were meticulously recorded and analyzed. The primary goal was to determine which algorithm provided the most reliable and efficient solution. To compare the results obtained from the algorithms, the average, highest, lowest values, and standard deviations were calculated. These metrics provide a comprehensive understanding of each algorithm's performance, highlighting their consistency and efficiency across multiple runs.

Table 4. Algorithm's Performance Metrics

	U				
	AOA	GA	PSO	DE	
Highest Value	-0,00345623830	-0,00361045940	0,37842594285	-0,00361131348	
Lowest Value	-0,00359215569	-0,00361131876	-0,00357134236	-0,00361132173	

Based on the comparative analysis of the results, it is evident that Differential Evolution (DE) performs the best for the given mechanical optimization problem. It not only achieves the most consistent results, as evidenced by the lowest standard deviation, but also produces a highly reliable performance with its average value closely matching that of the Genetic Algorithm (GA).

In summary, considering all the constraints, objectives, and performance metrics, Differential Evolution (DE) provided the best results in optimizing the mechanical design of the I-panel. Its consistent performance, minimal variability, and ability to reliably reach

Table 2.Material Properties

for Stability Analysis

Table 3. The Formulas Used for Stability Analysis

Formula	Description
The buckling stress of a thin flat plate is the stress at which a change to the stable configuration of equilibrium occurs.	Plate Buckling Stress
$\sigma_{cr} = \eta imes K_c imes \left(rac{e}{b} ight)^2$	Buckling Stress Expression
$K_c = rac{\pi^2 imes k_c}{12 imes (1- u_e^2)}$	Plate Buckling Factor
$\epsilon = \left(rac{\sigma}{E} ight) + 0.002 imes \left(rac{\sigma}{\sigma_{0.2}} ight)^2$	Ramberg and Osgood Model for Strain
$E_s=rac{\sigma}{\epsilon}$	Elastic Stress
$ u = \left(rac{E_s}{E} imes u_e ight) + \left[\left(1 - rac{E_s}{E} ight) imes u_p ight]$	Elastic-Plastic Poisson Ratio
Plastic Correction Factor	Plastic Correction Factor for Buckling Stress
$RF_i=rac{F_{tu}}{\sigma_{cr}}$	Reserve Factor

Standard Deviation	0,000030010973828	0,00000016496446	0,131949811114240	0,0000000021730
Average Value	-0,00353804462	-0,00361113512	0,07228021768	-0,0036113190

near-optimal solutions make DE the preferred choice for similar optimization challenges.

REFERENCES

- Bo, R. F. (2009, August). Genetic algorithm-based approach to concept solving for mechanical product in conceptual design. In 2009 Fifth International Conference on Natural Computation (Vol. 4, pp. 254-258). IEEE.
- Byrne, J., Cardiff, P., & Brabazon, A. (2014). Evolving parametric aircraft models for
- design exploration and optimisation. Neurocomputing, 142, 39-47
- Elegbede, C. (2005). Structural reliability assessment based on particles swarm optimization. Structural Safety, 27(2), 171-186.
- Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.
- Oruc, R., & Baklacioglu, T. (2024). Cruise range modeling of different flight strategies for transport aircraft using genetic algorithms and particle swarm optimization. Energy, 294, 130917.
- Saruhan, H., & Uygur, İ. (2003). Design optimization of mechanical systems using genetic algorithms. Sakarya University Journal of Science, 7(2), 77-84.

ACKNOWLEDGEMENT

We would like to express our respect and gratitude to our advisor, Associate Professor Dr. Fehmi Burçin ÖZSOYDAN, and our industry consultant, Adem TUNÇDAMAR, for their support in the realization of this study.

- This study is supported by Turkish Aerospace Industries Inc. within the scope of Lift Up Project. (Project no: 64c15b897e889)
- This study is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) within the scope of 2209-B University Students Research Projects for Industry.

