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With striking and notable characteristics, metaheuristic algorithms offer quite unique opportunities in solving
particularly constrained optimization problems. This project aims to develop a decision support system using
reputable population-based metaheuristic algorithms for aerospace mechanical design optimization, especially for
stiffened panels in airframes. A MATLAB GUI interface is designed to obtain parameters such as moment, shear
forces, tensile strength, elongation forces and compressive strength from decision makers. Users can also set the
metaheuristic algorithm parameters. The stiffened panel design is optimized considering strength and buckling
constraints using Particle Swarm Optimization, Differential Evolution, Arithmetic Optimization and Genetic

Algorithms. An extensive experimental study and nonparametric statistical tests show promising results of this

approach.

INTRODUCTION

The process of optimizing a function in the best or worst way
under certain constraints is called optimization. The main
goal of optimization is to ensure that a process is performed
with maximum efficiency and effectiveness. However, most
real-world problems cannot be solved exactly due to the
limitations of classical optimization techniques. The main
reason for this is related to the search procedures within each
technique. The general structure common to all optimization
processes consists of a defined space, a set and the mappings
between them. The defined space of the problem allows us to
identify the types of possible solutions each time we face an
optimization problem. The problem space of an optimization
problem is a set of possible solutions. A solution candidate is
an element of the problem space of a given optimization
problem. The union of all solutions to an optimization
problem is called the solution space. The search space of an
optimization problem is the set of all elements that can be
handled by search operations. This structure allows
optimizing problems with specific constraints, objetive

functions, and variables.
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Figure 2. I-Panel

STRENGTH ANALYSIS

System for the Design
Optimization of the
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The strength analysis of the stiffened panel involves a detailed calculation and optimization process to ensure

structural integrity and safety. The process begins with defining the main components of the panel and

identifying key design parameters such as width (W) and thickness (T). These parameters are essential for

calculating the sectional properties of the panel, including the moment of inertia, cross-sectional area, and

center of gravity.

Subsequently, the Principal and Von Mises stresses are determined for each component, providing insight into

the stresses the material will experience under various loads. Finally, the Reserve Factor (RF) is calculated for

both stress types, indicating the safety margin between actual and allowable stress levels. This comprehensive

analysis ensures that the components can safely withstand the applied loads.

Table 1. The Formulas Used for Strength Analysis

Step Description
Sectional Properties Moment of Inertia about x-axis
Total Cross-Sectional Area
y-coordinate of Center of Gravity
Moment of Inertia about Center of Gravity

Stress Calculations Shear Stress
Principal Stress

Von Mises Stress
Reserve Factor (RF) With Principal Stress

With Von Mises Stress

Formula

Iz = %

A= bih
Ycoe = Li o

Ia::z:,cog = Z?:l Im:,i + Az : Ay2

STABILITY ANALYSIS

This section presents a stability analysis of the stiffened panel structure. Local stability analysis has been

applied to each component of the structure. If the stress value calculated in the elements of the structure is

Table 2.Material Properties

for Stability Analysis

F., | Tension Ultimate Strength
Fiy | Tension Yield Strength
Fey Compression Yield Strength

n | Ramberg Osgood Coefficient in Tension

n. | Ramberg Osgood Coefficient in Compression
E | Elasticity Modulus
Poisson Ratio

Figure 3. Aircraft Fusalage
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Table 3. The Formulas Used for Stability Analysis

Formula

stable configuration of equilibrium occurs.
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Plastic Correction Factor
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The buckling stress of a thin flat plate is the stress at which a change to the Plate Buckling Stress

Description

Buckling Stress Expression
Plate Buckling Factor
Ramberg and Osgood Model
for Strain

Elastic Stress

Elastic-Plastic Poisson Ratio

Plastic Correction Factor for

Buckling Stress

Reserve Factor

' negative, the system begins to buckle. The surface geometry, loads, and material priorities of the structure
under investigation should be examined. Subsequently, the plate boundary conditions, such as free, hinged,
and fixed edges, are analyzed to determine which case of single compressions they are subjected to. The single
compressions evaluated on flanges and plates will determine the fixed parameters for the structural

components in the calculations, according to their respective cases. The following material properties are used:

Particle Swarm Optimization

among the positions of other birds in the swarm.

Figure 4. Particle movement strategy
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METHODOLOGY

In the implementation of Particle Swarm Optimization (PSO), the social behavior model among birds
is considered. Each bird exchanges information about their positions, velocities, and fitness among
themselves, and this exchange influences the behavior of the swarm to increase the likelihood of
migration towards more optimal fitness regions. It is assumed that during their flights, each bird in a

swarm continuously processes information about its own current position and velocity, as well as

Figure 5. PSO Pseudo Code

Differantial Evoution Algorithm

The Diftferential Evolution Algorithm is
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an algorithm for solving optimization problems. Initially, a

random population is created where each individual represents a solution vector of the problem. In

cach iteration, the population evolves

towards better solutions and eventually converges to a

stopping point or the best solution. The Differential Evolution Algorithm has been widely used as an

effective tool for solving complex and high-dimensional optimization problems.

Figure 6. An illustration of the mutation

1: Create and initialize a D- dimensional swarm with P particles.
2: repeat

3: foreach particlei=1,..., Pdo

4 if f(Xi) > f(Pbesti) then // f() represent the fitness function
5 phesti = Xi

6: end

7 if f(pesti) > f(nbesti) then

8 nbesti = Pbesti

9 end

10: end

11: foreach particle i=1,..,P do

12: update the velocity vector

13: update the position vector

14: end

15: until stopping condition is true;

phase

Figure 7. DE Pseudo Code

1: Begin
2: Set iteration t=1.
The difference vector | | The difference vector The scaled difference 3: Define problem dimension.
(Fra = £r2) (epese = £r3) vector F + (Xuew — 13 4: Generate initial population and evaluate the fitness.
rxz " ," 4 The scaled difference 5: While (termination condition not reached).
vector F s ( £,y — £pa) 6 for each population in current generation do
s 7: Generate objective Function
The generated 8 Create offspring using Differantial Evalution Operators
donor vector 1 9 Mutation
10: Crossover
11: Select the best offspring for the next generation.
___________________ * ::t:rg::: 12:  end for
F e T 13: setiteration t= t+1.
o X 14: end while
== - 15: end

spaces and random iterations.

Aritmetic Optimization Algorithm

Figure 8. The search phases of the AOA
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This generated solution space is then refined through a set
of optimization rules iterated under a given objective
function. This method forms the basis of optimization
techniques. In addition, under a given mathematical
problem, the probability of obtaining the global optimum

solution increases with a sufficient number of solution

Figure 9. AOA Pseudo Code

Genetic Algorithm

1: Initialize the Arithmetic Optimization Algorithm parametersa, p
2: Initialize the solutions’ positions randomly. (Solutions: i=1,..., N.)
3: while (C Iter < M Iter) do

4:  Calculate the Fitness Function (F F) for the given solutions

5:  Find the best solution (Determined best so far).

6: Update the MOA value using Eq. (2).

7:  Update the MOP value using Eq. (4).

8: for (i=1 to Solutions) do

9: for (j=1 to Positions) do

10: Generate a random values between [0, 1] (r1, r2, and r3)

11: if r1 >MOA then

12: Exploration phase

13: if r2 >0.5 then

14: Apply the Division math operator (D “ + ).

15: Update the ith solutions’ positions using the first rule in Eq. (3)
16: else

17: Apply the Multiplication math operator (M “ x ”).

18: Update the ith solutions’ positions using the second rule in Eq. (3)
19: end if

20: else

21: Exploitation phase

22: if r3 >0.5 then

23: Apply the Subtraction math operator (S “ - ).

24: Update the ith solutions’ positions using the first rule in Eq. (5).
25: else

26: Apply the Addition math operator (A “ +”)

27: Update the ith solutions’ positions using the second rule in Eq. (5)
28: end if

30: end for

31: end for

32: Clter=C Iter+1

33: end while

34: Return the best solution (x).

optimal solution.

Figure 10. GA and Data

The Genetic Algorithm (GA) is a search heuristic inspired by natural selection and genetics, used
to solve optimization and search problems. It starts with an initial population of potential
solutions represented as chromosomes. The process iterates through evaluation, selection,

crossover and mutation until a termination condition is met, resulting in an optimal or near-

Figure 11. GA Crossover

and Mutation Operator
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Figure 12. AOA
Pseudo Code

Crossover Point

Parent 1:

. begin
t=0;
initialize P(t);
evaluate P(t);

Parent 2:

Offspring 1:

Offspring 2:

recombine P(t) to obtain C(t);

(EA Iteration)

mutation;

3 Chromosome 1 Solution’s Coded Form; Vector
(String) Consists of Genes
With Alleles Assigned
[J Fitness (1 Number Assigned to a Solution; - a
Represent’s “Desirability”
- J

Data Structure

evaluate C(t);
select P(t+1) from P(t) and C(t)

1

2

3

3

4: while (termination criterion not met) do
5

6

7

8:

9: t=t+1;

Mutation Point

Parent: I LI | 1o o
Offspring: | . I 11: end

DECISION SUPPORT SYSTEM AND RESULTS

Parameters for use in optimization algorithms were obtained from the user through a MATLAB

GUI interface. The user was prompted to determine the feasible range of thickness and length

values, force values and algorithm parameters for optimization process.
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Figure 13. Matlab GUI Interface
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their consistency and efficiency across multiple runs.
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To visualize the real-world applicability of the obtained dimensions, MATLAB was used to create 'plot'

graphs. These plots provided a visual representation of the shapes for each run, allowing for an intuitive

assessment of the practicality and feasibility of the design parameters in a real-world context. This

visualization step was crucial in ensuring that the optimized dimensions not only met theoretical

requirements but also translated effectively into practical applications.

Figure 14.
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CONCULUSION

Each algorithm was run 50 times over 3000 iterations, and the results were meticulously recorded and analyzed.
The primary goal was to determine which algorithm provided the most reliable and efficient solution. To compare
the results obtained from the algorithms, the average, highest, lowest values, and standard deviations were
calculated. These metrics provide a comprehensive understanding of each algorithm's performance, highlighting

with its average value closely

Table 4. Algorithm’s Performance Metrics

PSO DE

-0.00361131348

-0.00361132173

0.,000000002173047

ADA GA
Highest Value -0.00345623830 0,00361045940
Lowest Value -0.00359215569 000361131876
Standard Deviation | 0 000030010973828)  0,0000001 6496446
Average Value -0.00353804462 0,00361113512

-0.00361131903

Engineering, 376, 113609.

Energy, 294, 130917.
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In summary, considering all the constraints,

Differential Evolution (DE) provided the best results in optimizing the mechanical design
of the I-panel. Its consistent performance, minimal variability, and ability to reliably reach
near-optimal solutions make DE the preferred choice for similar optimization challenges.

Based on the comparative analysis of the results, it is evident that Differential
Evolution (DE) performs the best for the given mechanical optimization
problem. It not only achieves the most consistent results, as evidenced by the
lowest standard deviation, but also produces a highly reliable performance

matching that of the Genetic Algorithm (GA).

objectives, and performance metrics,
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